在夜空中,我们常观察到那颗巨大无比的行星,那正是太阳系中最大的行星,也是史上被发现的最大的行星,它就是木星,而木星的质量几乎是其他行星总质量的两倍。
因此,我们很难想象在地球八千光年外的夜空中是否还有比木星更巨大的行星。
然而,就在某一天,科研人员在地球三百多光年外的夜空中,发现了比木星更巨大的行星——超级木星。
这颗行星的质量大得令人难以置信,甚至连科学家们都为之赞叹不已。
超级木星的质量究竟有多大?
行星的质量又有多大,质量超过一定程度又会发生怎样的质的变化呢?
那么这颗比木星更巨大的行星,又是如何形成的呢?
我们又是否有可能在宇宙中发现比超级木星更巨大的行星呢?

一、超级木星的发现。
一颗距离地球三百多光年的巨大行星在很久之前就被发现了,然而由于它所处的位置位于猎户座当中,因此被科研人员称为超级木星。
超级木星并不是一颗单独的行星,而是一颗双子星系统中的行星,科学家们更愿意称它为巨大的木星型行星。
这便是宇宙中的第一颗发现的最大行星,因此也被赋予了超级木星的美名。
然而,超级木星的质量究竟有多大?
众所周知,木星是太阳系中最大的行星,其质量几乎是其他行星质量的两倍,那么超级木星又有着怎样的质量呢?
经过对超级木星以及其所处的双子星系统进行分析,发现超级木星的质量大约是太阳的十倍,这一数值之大,也使得超级木星被誉为宇宙中的巨大行星。
然而,这颗距离地球三百多光年的超级木星究竟有多大?
除此之外,科学家们还发现在超级木星周围还存在着一颗质量巨大的恒星,而超级木星和这颗质量巨大的恒星便是双星系统当中的两颗天体,它们共同绕着双星系统的质心进行着旋转,形成了一套完整的行星系。

同时,这一双星系统还包括着另一颗质量巨大的恒星,质心到三者的距离非常远,因此超级木星和两颗质量巨大的恒星构成了一颗双星系统当中的一颗行星。
这样一套完整的双星系统,让科学家们对太阳系以及地球有了更深刻的认识,同时也为我们研究行星系的形成和演化提供了更多的线索。
在追溯超级木星的诞生之初,科学家们认为它是从祖恒星的一颗原行星的原型行星,之后经过了演化和形,才成为了如今的巨大木星型行星。

在祖恒星形成的过程中,由于存在许多的杂质原子,因此在祖恒星爆炸后,产生了丰富的各类元素,并且还形成了许多的恒星和行星。
在这一系列的过程中,祖恒星的中心温度高达上千万度,因此就会形成大量的核聚变,最终产生许多的重元素。
而祖恒星的演化过程中,形成了更多的次级恒星,同时还产生了巨大的行星,也就是超级木星型的行星。
这一过程形成的行星都非常巨大,其质量都比太阳还要重,这也是超级木星诞生的原因。

经过对超级木星周围的环境进行探索,科学家们认为它所处的双星系统是由两颗质量巨大的恒星构成的恒星双系统,同时还有一颗质量更大的恒星。
然而,这颗质量更大的恒星正处于旋涡中,而恒星双系统和超级木星所处的位置距离这颗质量更大的恒星非常远,甚至还比木星和太阳之间的距离更远。
这种名为旋涡的位置形成了一种平衡,使得超级木星在它所处的位置不断进行演化,最终就形成了如今这颗巨大的行星。

二、行星的质量吸积规律。
行星的质量究竟有多大?
行星的质量是由其所处的位置和其所吸积的物质的成分所决定的。
行星在宇宙中诞生的过程中,通常都是从星云物质中形成的,而星云物质中主要包括了气态尘埃和气体。
在行星在诞生之初,这些原始物质便是构成行星的主要物质组成,同时也是行星的主要成分,因此行星的质量就是由其成分所决定的。
在行星在形成之初,最先形成的就是比较容易凝聚或是更加重的元素,同时还包括一些稳定的元素,这些元素是在核反应中形成的,它们的存在不仅能够帮助行星在形成之初就进行内部的温度和压力稳定,同时还能形成行星的内部结构。
然而这些元素本身也是不稳定的,它们往往还会进行一系列的核反应,从而形成新的元素,这一过程使得行星在其所处的位置所吸积的气体和固体的成分不仅非常复杂,同时还非常丰富。
在行星所处的位置,主要是由于原始物质的不同,使得行星所吸积的气体成分也不同。
在形成的过程中,如果行星所吸积的气体成分中富含氢元素,同时又位于较远的位置,就可以形成巨大的行星,而且氢元素是星云物质中含量最多的元素,因此超级木星也正式因为其所吸积的气体中含有大量的氢元素,使得其质量大大增加。
然而氢元素又是非常容易进行核反应的元素,因此超级木星在所吸积的气体中还会进行核反应,这一过程会使得它的质量进一步变大。

在行星所吸积的气体中,氢元素会先形成氦元素,这一过程会释放出大量的热能,因此就会使得行星的表面温度和压力都会急剧上升,同时还会吸积更多的气体,从而使行星的质量进一步增大。
然而大型行星的质量是有限的,一旦超过一定的节点,就会发生质的变化,要么成为褐矮星,要么继续增大成为恒星,那么行星的质量究竟有多大呢?

科学家将行星的质量和恒星进行了区分,恒星的质量通常都是太阳的十倍以上,而行星的质量则是小于这一数值的。
因此,当行星的质量超过十倍的太阳质量时,就会变成恒星,但是由于它所吸积的气体中富含的氢元素不足以维持核反应的持续,因此最终只能成为褐矮星。
而褐矮星的质量通常都是大于13倍的木星质量,小于0.08倍太阳质量,因此在褐矮星和行星之间有一个棕矮星鸿沟,通常将质量大于13倍木星质量的星球称为褐矮星,质量小于13倍的星球则称为行星。

三、行星的质量节点。
行星的质量有着一定的节点,一旦超这一节点,就会发生质的变化。
因此,行星的质量大致分为巨大行星、类地行星、地球型行星和火星型行星,它们分别是从质量最大到最小的行星类型。
而巨大行星的质量则是大约在1倍到100倍地球质量之间,这篇质量上限是由行星所吸积的气体的能力所决定的。
当行星所吸积的气体能够抵达山田-德夫质量,就会形成一个质量为1倍地球质量的行星,而这一质量上限是由行星所吸积的气体的能量所决定的。
当行星所吸积的气体能够达到质量的100倍时,就会形成一个质量为100倍地球质量的行星,而这一质量上限就是由行星所吸积的气体的能量所决定的。
但是这并不是最终的能量极限,当行星所吸积的气体能够达到100倍地球质量时,就会形成一个质量为1至10倍地球质量的行星,而这一质量上限则是由行星所吸积的气体的能量所决定的。
这一质量上限也是从行星所吸积的气体中所能够形成的一种极限,当行星所吸积的气体能够达到100倍地球质量时,就会形成一个质量为10倍到100倍地球质量的行星,而这一质量上限也是由行星所吸积的气体的能量所决定的。
因此,行星的质量有一个非常明确的节点,当行星所吸积的气体能够达到100倍地球质量时,就会形成一个质量为100到1000倍地球质量的行星,而这一质量上限也是由行星所吸积的气体的能量所决定的。

当行星所吸积的气体能够达到1000倍地球质量时,就会形成一个质量大于1000倍地球质量的行星,而这一质量上限也是由行星所吸积的气体的能量所决定的。
而氢元素在宇宙中的普遍存在,使得行星的物质组成相对稳定,因此行星的质量区间也有一个相对固定的范围。
由于氢元素的存在,行星所吸积的气体能够达到1000倍地球质量,这一节点就是氢元素的浓度,当行星所吸积的气体中含有大量的氢元素和氢化物,它的质量就会大大增加。

结语
科学家们还在不断的对这一理论进行探索,它的存在便是质量节点,而氢元素的浓度也是质量节点的存在。
氢元素的存在对行星的质量和演化起着重要的作用,这也是宇宙中行星形成规律稳定的原因。
宇宙中5颗奇特的系外行星,其表面的恶劣程度难以想象!
在我们的太阳系中一共有八颗行星围绕着太阳旋转,其中内侧四颗为岩石行星,外侧四颗为气态行星,不过行星并非是太阳独有,在宇宙中几乎每一颗恒星都拥有自己的行星,而这些行星被天文学家们称为系外行星。到目前为止,天文学家通过望远镜已经在宇宙中发现了超过5000多颗系外行星,而且在这数千颗系外行星中,还存在着远超出我们想象的奇特世界, 如有些行星的表面会下玻璃雨。有的会上演冰火两重天, 有的甚至还会逃离母星的控制,成为流浪行星,而今天便带你了解宇宙中奇特的5颗系外行星。1.HR 5183b行星HR 5183b行星是一颗气态巨行星,它距离我们大约为100光年,质量是木星的三倍,当时天文学家在发现它后,曾表示从未见过如此奇特的系外行星,因为它拥有奇怪的蛋形轨道,并且具有极高的偏心率,假如我们将他想象成太阳系的木星,那么其最远轨道能够达到海王星之外,可以想象到他的奇特之处。2.WASP-76bWASP-76b行星位于双鱼座方向,距离我们地球大约为630光年,他是一个绕着F型主序星运行的气态巨行星,其质量大约是木星的0.92倍,半径为木星的1.83倍,而它之所以独特是因为在它的表面会下铁雨,由于距离母恒星非常近,已经被潮汐锁定,因此它的一面总是朝向恒星,其白天温度高达2500C,以至于该行星上的铁元素都熔化成了气体。这些铁蒸气被强风吹到较冷的区域,并凝结成液滴形成铁雨。3.HD189733bHD189733b是一颗距离地球约63光年的系气态巨行星,质量比木星还要大13%,在2008年,天文学家通过偏振测量法测定,发现HD189733b的蓝色波段反照率高于红色,这意味着他看起来是一个美丽的蓝色星球。不过HD189733b虽然呈现出蓝色但并不是海洋,因为HD189733b表面温度极高,天文学家经过进一步分析发现,在它的大气层中富含硅酸盐,而这些硅酸盐在高温下熔化,然后形成了玻璃雨。这些玻璃雨在风速高达9000公里/小时的超音速风中呈弧形落下。4.开普勒10b开普勒-10b是开普勒望远镜发现被确认的第一颗岩质系外行星,距离地球大约为564光年,质量是地球的3.2倍左右,假如你能够置身于该行星表面会发现他这里如同地狱一般,由于距离主恒星非常之近,只有太阳至水星距离的20分之一,因此表面温度高达1300C,而在如此高温下,开普勒-10b上的铁和硅酸盐都成了熔岩状态,从而形成巨大的熔岩海洋。同时在强风的携带中,还会下熔岩金属雨5.流浪行星我们知道几乎每个行星都是围绕其母恒星运行,但在宇宙中也有特例。有些行星可能由于某种原因会逃离母恒星的引力控制,独自在寒冷的黑暗空间中徘徊。而这些行星被称为流浪行星,比如CFBDSIR2149便是一颗被恒星抛出的流浪行星。它的体积是木星的7倍,表面温度约为400摄氏度,是一颗只有5000万至1.2亿年历史的年轻行星,不过他是何种原因被抛出原来的行星系统,我们还不得而知!以上便是5个奇特的系外行星,看完不禁令人惊叹宇宙的奇妙和多样性。那么你觉得以上哪个最奇特呢,欢迎在下方评论留言!
科学发现:12.5光年外有一颗最近似地球的行星,或有外星人存在?
一百年来,科学家们采用越来越先进的仪器设备搜寻外星人,这些设备包括但不限于陆地和太空的各种类型天文望远镜、无人探测器等等,从近及远,希望在茫茫宇宙中找到知音。但一直都在失望中,太阳系没发现,远离太阳系亿万光年的深空也没发现。这至少说明了两个问题,一是就是在宇宙中生命和文明太稀有,知音难觅;二是人类的科技和探测水平还处于很低层次,无法发现即便近在咫尺的外星生命和文明。随着各种地面天文望远镜、太空望远镜的不断提升,科学家们的目光从太阳系内逐步转向太阳系外,寻找可能存在生命的行星。1992年美国阿雷西博天文台发现了第一颗太阳系外行星,迄今已经有5000多颗太阳系外行星被发现。科学家们按照地球生命孕育和存在条件来寻找地外星球的生命之源,即寻找所谓的宜居星球。地球是一颗具有岩石外壳的行星,这样才能够适宜生命在表面活动;其次地球存在液态水,海洋才是地球生命的摇篮。而适宜温度,是液态水存在的前提条件,目前地球平均气温约为15℃。科学家们认定这是目前认知生命存在的两个硬条件,系外行星如果具备这两个条件,就属于宜居星球。行星本身不发光发热,主要依靠恒星的辐射能量才能保持温度,这样宜居星球就至少要与主恒星保持一定距离,远了不行,近了也不不行;宜居星球还不能像太阳系木星、土星、天王星、海王星那样的气态行星,而是像地球、火星这样的岩石行星。符合这两个条件的行星极少,在已经找到的5000多颗太阳系外行星中,类地行星大约只有几百颗,宜居带行星只有几十颗。当然,除了以上最重要的两项条件,要让生命孕育和存活还有许多严苛的要求,这样科学家们弄了个地球相似度指数,英文为Earth Similarity Index,简称为ESI,就是根据行星半径、密度、质量、逃逸速度、表面温度、处在宜居带的位置等,通过公式量化打分,取值0~1之间,0代表完全不同,1代表完全相同。一般认为0.5分以下的行星是不适宜生命存在的,相似度越高,孕育和存在生命的可能性就越高。在我们太阳系,除了地球,还有三颗类地行星,它们的ESI值分别为:水星0.6,金星0.44,火星0.7。金星是距离地球最近的行星,且质量和地球差不多,又距离太阳系宜居带最近,为啥ESI反而只有0.44呢?这就是因为那里的大气和表面状态十分恶劣,被称为太阳系的地狱行星。而火星ESI值为0.7,是太阳系与地球相似度最大的行星,这也是科学家们正在努力奔赴火星,企图开发火星的原因。而太阳系外一些经过科学家们精挑细选出来的行星,却有不少高于火星ESI值的星球,如格利泽-832 c为0.81,开普勒-442 b为0.83,开普勒-62 e为0.83,格利泽-667 Cc为0.84,开普勒-438 b为0.88等。距离我们最近的恒星比邻星也有两颗行星,其中比邻星b的ESI值也高达0.86。而我们今天重点要说的这颗蒂加登星b星,ESI值竟高达0.95!这是迄今为止,科学家们在太阳系外发现与地球最接近的行星,说它是地球的表兄弟甚至亲兄弟都不为过,那么那里会存在蒂加登星人吗?现在开始说重点:蒂加登星b是一颗怎样的星球?2003年,科学家在白羊座发现一颗暗弱的恒星,被称为SO J025300.5+165258,距离我们12.5光年。这项发现是NASA一个研究小组在搜寻之前的小行星数据资料中意外找到的,由此就以这个研究小组组长、NASA天体物理学家博纳尔·蒂加登的名字命名,被称为蒂加登星。为了方便读者理解,这里简要说一下系外行星的命名规则。一般来说就是在发现的恒星后面加上小写字母a以后的英文字母,a一般用于恒星,不用于行星。因此某恒星系统第一颗被发现的行星就被称为某恒星b,其次就类推为c、d、e、f、g…等等。蒂加登星现在发现了两颗行星,被分别命名为蒂加登星b和蒂加登星c,我们要说的ESI值达到9.5的行星就是蒂加登星b。为什么其与地球相似度这么高呢?首先,其公转轨道处于蒂加登星的宜居带,因此其表面温度适宜,这样,这颗星表面就很可能存在着液态水;其次,这颗星是一颗类地行星,其大小约地球的1.05倍,也就是个头质量与地球差不多,生命承受的重力也与地球相当。这是宜居星球最重要的两项指标,蒂加登星b都符合,通过计算其ESI值达到惊人的9.5。但因此就认为那上面一定会有我们的知音,就有些过于乐观了。实际上,蒂加登星b还有许多与我们地球不一样的条件,有些甚至令人细思极恐。蒂加登星b的主恒星蒂加登星是距离太阳最近的恒星之一,排在第24位。但这颗恒星很小,是一颗红矮星,质量只约太阳的8.9%,表面温度只有约2600度,不到太阳的一半,光度只有太阳的约十一万分之一,视星等为15.4等,距离人类肉眼能看到的6等星亮度差了5757倍,因此很晚才被发现。由于恒星很小,亮度热度较低,其行星为了获得可保存液态水的温度就必须距离恒星较近,因此在所谓宜居带的蒂加登星b距离蒂加登星就只有约0.025天文单位,约375万公里,也就是约为地球与太阳距离的0.025倍,约水星与太阳距离的十六分之一。根据蒂加登星的亮度和温度,在这样一个距离相当在我们太阳系的地球和金星轨道之间,正好是在宜居带,让蒂加登星b的表面气温能够保持在0摄氏度以上,理论上应该比地球更热一些,具备存在液态水的条件。但这种距离不可避免可能会发生两个事件:其一,蒂加登星强大的引力潮汐力很可能早就将蒂加登星b潮汐锁定了,就像月球被地球潮汐锁定一样,永远一面朝着主星;其二,强大的恒星风让蒂加登星b的大气很难保留。这样,蒂加登星b会成为一个冰火两重天的世界,朝着主恒星的一面处于永远的白天炽热状态,水被蒸发殆尽,而背着主恒星的一面则永远处于黑暗的冰封酷寒中,连大气都被冻结。而且,许多红矮星都是耀星,所谓耀星就是恒星上每天会出现几次超级耀斑爆发,紫外辐射会瞬间增强几百乃至上万倍,在耀斑爆发的几分钟内,恒星都会由红色变成蓝色,这种强烈的紫外辐射会杀死行星上一切生命,同时吹跑行星大气。大气和地磁是地球生命保护的双重铠甲,蒂加登星b没有了大气和地磁保护,将受到来自蒂加登星的强烈辐射,生命很难存活。而且,这样近的距离让绕蒂加登星公转一圈只需约117个小时,每秒线速度约56公里。也就是如果那里真的有蒂加登星人,他们约4.9个地球日就过了一年。当然,由于已经被潮汐锁定,就没有了一年四季,倒也感觉不到一年的寒暑变化。那么,蒂加登星b在这样的环境下会有生命存在吗?现在还是个未知数,也只能是个未知数。因为人类现在的观测水平还很弱,无法看清那里的一切,甚至根本看不到蒂加登星b的存在,只是通过大型天文望远镜分析恒星的光变和引力摄动,来估计那里的情况。如果要证实那里到底有没有蒂加登星人,最好的办法就是到那附近去看一看。可惜,现在人类的航天速度还处于蜗牛时代,虽然无人探测器通过行星引力弹弓效应已经达到了秒速200公里,但载人航天的速度还只能勉强达到第二宇宙速度,也就是每秒11.2公里。如果要飞出太阳系,至少要达到第三宇宙速度,即每秒16.7公里。如果载人航天在短期内达到第三宇宙速度,按每秒17公里的速度飞到蒂加登星去,一切都顺利的话,旅途也要22万年;即便无人探测器200公里秒速,飞往蒂加登星也需要18700多年。因此,要去蒂加登星看一看的愿望,在今天还只能是个不切实际的梦。这样,那里有没有蒂加登星人,就无法定论了。不过科学家通过分析,认为那里的生命存在条件并没有上述说的那么悲观,主要原因如下:1、蒂加登星的年龄至少已经有80亿岁了,这样比太阳就大了约35亿岁,作为红矮星年轻气盛的耀星时期已经过去了,恒星运行已经平稳多了,因此对蒂加登星b就友好多了,不至于有那么恶劣的辐射环境。2、即便蒂加登星的大气被吹跑了,又没有地磁保护,但只要有海洋存在,同样可以孕育和生存生命,因为海洋可以隔离和吸收辐射,生命可以生存在深水里。3、即便被潮汐锁定,一面固定对着恒星,另一面永远得不到光照,但如果有空气流动的话,依然能够传递热量,让背面也能感受到温暖;而且,在晨昏带,就是白天与黑夜的交界处,还有一圈恒温带,完全适宜生命存在。4、相对太阳这样的黄矮星,红矮星寿命超长,因此具有让生命稳定生存很长的时期,这个时间长达几百上千亿年,蒂加登星寿命可达万亿年。而太阳寿命只有100亿岁,而且让地球生命宜居的时间只有10~15亿年。5、现在的蒂加登星b比地球年龄大了35亿岁,如果蒂加登星人像人类一样的时间出现,现在文明已经有35亿年了,那是何等先进的文明啊。所以,科学家们还是看好那里的生命,更期盼着那里出现文明。如果那里真的存在高级别文明,我们去不了,说不定哪天蒂加登星人就来到我们面前呢。
标签: