首页 > 探索 > 宇宙探索

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

时间:2025-02-10来源:网络作者:小白

地球,银河系中的众矢之的,我们能够打赢这场行星防御战吗?

我们该如何应对来袭的太空岩石这一双重麻烦——它们不仅对地球有害,而且由于其构成特殊,人们很难对付这些岩石。

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

图片NASA/戈达德/亚利桑那大学)

过去几年中,发生了一系列与各种小行星近距离接触和撞击的事件。

有趣的是,在一些情况中,小行星的碎石堆构成令人惊讶。

多个国家的小行星探测器发现的不是坚固的天体,而是无数碎石和巨砾,它们被天体自身的小重力场松散地结合在一起。

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

最近,美国国家航空航天局(NASA)的OSIRIS-REx任务在小行星贝努(Bennu)上留下了咬痕,它从碎石堆中攫取碎片并装袋,然后在去年9月将这些收集物空投到犹他州。

同样,日本的两次 "隼鸟 "任务也将小行星 "丝川"(2010 年)和小行星 "龙宫"(2020 年)的碎石堆标本拖回了地球。

这些情况正在行星防御界流传。

我们该如何应对来袭的太空岩石这一双重麻烦——它们不仅对地球有害,而且由于其构成特殊,人们很难对付这些岩石。

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

求助技术

美国国家航空航天局(NASA)的 "双小行星重定向试验"(或称 "DART")取得了巨大成功,人类首次完成了有目的地移动天体的任务。

经过 10 个月的旅程,DART 于 2022 年 9 月对小行星 Dimorphos 进行了精确的动能撞击,改变了该小行星绕其小伙伴小行星 Didymos 的轨道周期。

撞击前的预测预估小行星可能发生一系列偏转,撞击后的结果显示,目标小行星发生了显著偏转,这正是高端的撞击前模型所预测到的。

"美国国家航空航天局(NASA)报告称,DART的结果"在未来有必要应用该技术时,是大有前景的。

喷气推进实验室(Jet Propulsion Laboratory)工程研究员约翰-布罗菲(John Brophy)说,DART展示的动能撞击法一直是试图偏转飞向地球的小行星的 ‘求助技术’。

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

布罗菲告诉太空网,他们撞击的位置非常接近质量中心。

这个撞击位置很好。

另一方面,小行星碎石堆似乎让人想到了《阿甘正传》中的那句箴言:生活就像一盒巧克力:你永远不知道你会得到什么。

在一次撞击中,如果撞击得足够猛烈,使其发生偏转,就很有可能破坏它。

布罗菲说,"破坏意味着把它炸得四分五裂。

接下来就会发生 ‘一个结果不确定的混乱过程’。

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

动能撞击前两秒钟,美国国家航空航天局的双小行星重定向测试(DART)所拍摄的小行星迪莫非斯的最后一张完整图像。

图片NASA/Johns Hopkins APL)

受控的过程

有一种想法是让动能撞击器更友好、更温和地反复撞击目标,但这种方法也带来挑战。

布罗菲是被称为离子束偏转的行星防御新思路的研究负责人。

他说,"引导离子束按照小行星的速度矢量撞击小行星。

通过离子束偏转,可以在几个月、甚至一两年的时间里将能量分散。

"。

布罗菲补充说道,使用这种离子束概念有几个好处。

首先,该过程非常可控。

也适用于碎石堆,而且不在乎物体的强度、构成或太空岩石的旋转方式。

布罗菲表示,离子束偏转 "是一种具有潜在吸引力的方法,可以帮助减少碎石堆偏转的问题。

他也指出,当然也可以使用核装置进行偏转,但这被许多人视为最后手段。

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

通过离子束偏转小行星的技术还在研究中。

图片马德里理工大学空间动力学小组)

大狗

埃德-卢(Ed Lu)是小行星研究所(Asteroid Institute)的执行主任,该研究所是 B612 基金会的一个项目。

作为美国国家航空航天局(NASA)宇航员,他执行过三次太空任务,在地球轨道上飞行了 206 天,帮助建造了国际空间站并在站上生活。

卢也是 重力牵引器的共同发明人之一。

重力牵引器是一种可控的偏转小行星的方法,只利用航天器的重力场来传递所需的冲力。

他说,他们正对以实验方式在太空中测试这一概念开展研究。

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

从行星防御的角度来看,卢早就表示过,偏转并不是很困难。

它从来都不是最难的部分。

他告诉太空网(Space.com):一直以来,寻找、跟踪和获得完整的目录,以及知道什么时候会有东西撞上才是最是困难的。

卢说,有关小行星的重大新闻是,目前智利的Cerro Pachón正在建造的薇拉-鲁宾天文台(Vera C. Rubin Observatory)。

预计该天文台将十分擅长发现新的小行星,因为该设施每晚都将监测大片天空,并能探测到非常暗淡的移动物体。

卢还表示,这是真正的 ‘大狗’,可以在未来几年内发现大部分小行星。

它运行的头几年所发现的小行星数量是最多的。

那时候发现任何行星都很容易。

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

图为2023年10月落日余晖中即将完工的薇拉-鲁宾天文台(Vera C. Rubin Observatory)。

图片RubinObs/NSF/AURA/H. Stockebrand)

管理问题

最近的一项民意调查显示,关注小行星撞击地球的轨迹应该是NASA的首要任务。

皮尤研究中心(Pew Research Center)7 月 20 日的一项 "事实库 "调查结果显示,监测有可能撞击地球的小行星是美国国家航空航天局(NASA)首先需要处理的公共事项。

监测地球的气候系统也是 NASA 的首要任务。

但是相对较少的美国人认为,将人类宇航员送上月球或火星应该是首要任务。

在技术上处理碎石堆是一回事,但似乎还需要做更多的工作来解决抵御小行星撞击地球的政治和社会学方面的问题。

尼古拉-施密特(Nikola Schmidt)是布拉格国际关系学院新兴技术治理中心的高级研究员和负责人。

他最近撰写了一篇关于 30 年行星防御治理的文章。

施密特告诉太空网:问题是,我们不知道碎石堆表面下有什么。

内部可能有空洞,或者更大的岩石之间的空间可能完全被碎石填满。

这是我们所不知道的,而且可能会造成明显不同的影响。

因此,结构是一个问题,据信大约70-80%的小行星都是由碎石堆组成的。

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

安全制度

施密特在《宇航学报》(Acta Astronautica)1月刊上发表的论文中指出,今天,我们还没有到可以顺利保卫地球的地步。

他也很快补充道,"这并不是说联合国机构、专家实体和整个行星防御科学界没有进行沟通和信息共享。

它们确实在这样做,但各国希望将决策权掌握在自己手中,这与在地球层面做好准备、避免在威胁迫在眉睫时进行不必要的国际讨论是背道而驰的。

施密特还表示:这就是各国以多边安全机制的形式开展国际合作的原因。

这些制度规定了决策程序,不会因特定国家的选举而改变,可以为所有国家提供不平等贡献的安全保证,这对小国的安全和强国行动的合法性至关重要--每个国家都可以贡献自己力所能及的力量,但所有国家都从合作中享有同等的安全。

行星来袭,何以拯救地球?太空中的行星防御术能够成功吗?

世界责任

- 小行星 "贝努 "如何让美国国家航空航天局的 "OSIRIS-REx "航天器措手不及,并在途中险些丧命?

 - 10年前俄罗斯上空的车里雅宾斯克流星爆炸为行星防御敲响了警钟

 - NASA的OSIRIS-REx任务将如何帮助地球抵御小行星贝努2182年的撞击及其飞掠

施密特告诉美国太空网,他多年来一直认为行星防御关乎世界性责任,这种责任是由不断产生的有关小行星及其轨道的新科学知识构成的。

这些知识改变了我们对周围世界的认知,而我们的认知超越了民族国家的边界,也超越了民族国家的力量。

因此,国家必须找到合作的方式,否则就无法实现其存在的主要理由,即为公民提供安全。

施密特总结道,世界主义也不是一种可以向公众推销的语言,但是行星防御和其他任何东西一样,正在不断变革的社会中重新阐明社会契约。

宇宙中5颗奇特的系外行星,其表面的恶劣程度难以想象!

在我们的太阳系中一共有八颗行星围绕着太阳旋转,其中内侧四颗为岩石行星,外侧四颗为气态行星,不过行星并非是太阳独有,在宇宙中几乎每一颗恒星都拥有自己的行星,而这些行星被天文学家们称为系外行星。到目前为止,天文学家通过望远镜已经在宇宙中发现了超过5000多颗系外行星,而且在这数千颗系外行星中,还存在着远超出我们想象的奇特世界, 如有些行星的表面会下玻璃雨。有的会上演冰火两重天, 有的甚至还会逃离母星的控制,成为流浪行星,而今天便带你了解宇宙中奇特的5颗系外行星。1.HR 5183b行星HR 5183b行星是一颗气态巨行星,它距离我们大约为100光年,质量是木星的三倍,当时天文学家在发现它后,曾表示从未见过如此奇特的系外行星,因为它拥有奇怪的蛋形轨道,并且具有极高的偏心率,假如我们将他想象成太阳系的木星,那么其最远轨道能够达到海王星之外,可以想象到他的奇特之处。2.WASP-76bWASP-76b行星位于双鱼座方向,距离我们地球大约为630光年,他是一个绕着F型主序星运行的气态巨行星,其质量大约是木星的0.92倍,半径为木星的1.83倍,而它之所以独特是因为在它的表面会下铁雨,由于距离母恒星非常近,已经被潮汐锁定,因此它的一面总是朝向恒星,其白天温度高达2500C,以至于该行星上的铁元素都熔化成了气体。这些铁蒸气被强风吹到较冷的区域,并凝结成液滴形成铁雨。3.HD189733bHD189733b是一颗距离地球约63光年的系气态巨行星,质量比木星还要大13%,在2008年,天文学家通过偏振测量法测定,发现HD189733b的蓝色波段反照率高于红色,这意味着他看起来是一个美丽的蓝色星球。不过HD189733b虽然呈现出蓝色但并不是海洋,因为HD189733b表面温度极高,天文学家经过进一步分析发现,在它的大气层中富含硅酸盐,而这些硅酸盐在高温下熔化,然后形成了玻璃雨。这些玻璃雨在风速高达9000公里/小时的超音速风中呈弧形落下。4.开普勒10b开普勒-10b是开普勒望远镜发现被确认的第一颗岩质系外行星,距离地球大约为564光年,质量是地球的3.2倍左右,假如你能够置身于该行星表面会发现他这里如同地狱一般,由于距离主恒星非常之近,只有太阳至水星距离的20分之一,因此表面温度高达1300C,而在如此高温下,开普勒-10b上的铁和硅酸盐都成了熔岩状态,从而形成巨大的熔岩海洋。同时在强风的携带中,还会下熔岩金属雨5.流浪行星我们知道几乎每个行星都是围绕其母恒星运行,但在宇宙中也有特例。有些行星可能由于某种原因会逃离母恒星的引力控制,独自在寒冷的黑暗空间中徘徊。而这些行星被称为流浪行星,比如CFBDSIR2149便是一颗被恒星抛出的流浪行星。它的体积是木星的7倍,表面温度约为400摄氏度,是一颗只有5000万至1.2亿年历史的年轻行星,不过他是何种原因被抛出原来的行星系统,我们还不得而知!以上便是5个奇特的系外行星,看完不禁令人惊叹宇宙的奇妙和多样性。那么你觉得以上哪个最奇特呢,欢迎在下方评论留言!

科学发现:12.5光年外有一颗最近似地球的行星,或有外星人存在?

一百年来,科学家们采用越来越先进的仪器设备搜寻外星人,这些设备包括但不限于陆地和太空的各种类型天文望远镜、无人探测器等等,从近及远,希望在茫茫宇宙中找到知音。但一直都在失望中,太阳系没发现,远离太阳系亿万光年的深空也没发现。这至少说明了两个问题,一是就是在宇宙中生命和文明太稀有,知音难觅;二是人类的科技和探测水平还处于很低层次,无法发现即便近在咫尺的外星生命和文明。随着各种地面天文望远镜、太空望远镜的不断提升,科学家们的目光从太阳系内逐步转向太阳系外,寻找可能存在生命的行星。1992年美国阿雷西博天文台发现了第一颗太阳系外行星,迄今已经有5000多颗太阳系外行星被发现。科学家们按照地球生命孕育和存在条件来寻找地外星球的生命之源,即寻找所谓的宜居星球。地球是一颗具有岩石外壳的行星,这样才能够适宜生命在表面活动;其次地球存在液态水,海洋才是地球生命的摇篮。而适宜温度,是液态水存在的前提条件,目前地球平均气温约为15℃。科学家们认定这是目前认知生命存在的两个硬条件,系外行星如果具备这两个条件,就属于宜居星球。行星本身不发光发热,主要依靠恒星的辐射能量才能保持温度,这样宜居星球就至少要与主恒星保持一定距离,远了不行,近了也不不行;宜居星球还不能像太阳系木星、土星、天王星、海王星那样的气态行星,而是像地球、火星这样的岩石行星。符合这两个条件的行星极少,在已经找到的5000多颗太阳系外行星中,类地行星大约只有几百颗,宜居带行星只有几十颗。当然,除了以上最重要的两项条件,要让生命孕育和存活还有许多严苛的要求,这样科学家们弄了个地球相似度指数,英文为Earth Similarity Index,简称为ESI,就是根据行星半径、密度、质量、逃逸速度、表面温度、处在宜居带的位置等,通过公式量化打分,取值0~1之间,0代表完全不同,1代表完全相同。一般认为0.5分以下的行星是不适宜生命存在的,相似度越高,孕育和存在生命的可能性就越高。在我们太阳系,除了地球,还有三颗类地行星,它们的ESI值分别为:水星0.6,金星0.44,火星0.7。金星是距离地球最近的行星,且质量和地球差不多,又距离太阳系宜居带最近,为啥ESI反而只有0.44呢?这就是因为那里的大气和表面状态十分恶劣,被称为太阳系的地狱行星。而火星ESI值为0.7,是太阳系与地球相似度最大的行星,这也是科学家们正在努力奔赴火星,企图开发火星的原因。而太阳系外一些经过科学家们精挑细选出来的行星,却有不少高于火星ESI值的星球,如格利泽-832 c为0.81,开普勒-442 b为0.83,开普勒-62 e为0.83,格利泽-667 Cc为0.84,开普勒-438 b为0.88等。距离我们最近的恒星比邻星也有两颗行星,其中比邻星b的ESI值也高达0.86。而我们今天重点要说的这颗蒂加登星b星,ESI值竟高达0.95!这是迄今为止,科学家们在太阳系外发现与地球最接近的行星,说它是地球的表兄弟甚至亲兄弟都不为过,那么那里会存在蒂加登星人吗?现在开始说重点:蒂加登星b是一颗怎样的星球?2003年,科学家在白羊座发现一颗暗弱的恒星,被称为SO J025300.5+165258,距离我们12.5光年。这项发现是NASA一个研究小组在搜寻之前的小行星数据资料中意外找到的,由此就以这个研究小组组长、NASA天体物理学家博纳尔·蒂加登的名字命名,被称为蒂加登星。为了方便读者理解,这里简要说一下系外行星的命名规则。一般来说就是在发现的恒星后面加上小写字母a以后的英文字母,a一般用于恒星,不用于行星。因此某恒星系统第一颗被发现的行星就被称为某恒星b,其次就类推为c、d、e、f、g…等等。蒂加登星现在发现了两颗行星,被分别命名为蒂加登星b和蒂加登星c,我们要说的ESI值达到9.5的行星就是蒂加登星b。为什么其与地球相似度这么高呢?首先,其公转轨道处于蒂加登星的宜居带,因此其表面温度适宜,这样,这颗星表面就很可能存在着液态水;其次,这颗星是一颗类地行星,其大小约地球的1.05倍,也就是个头质量与地球差不多,生命承受的重力也与地球相当。这是宜居星球最重要的两项指标,蒂加登星b都符合,通过计算其ESI值达到惊人的9.5。但因此就认为那上面一定会有我们的知音,就有些过于乐观了。实际上,蒂加登星b还有许多与我们地球不一样的条件,有些甚至令人细思极恐。蒂加登星b的主恒星蒂加登星是距离太阳最近的恒星之一,排在第24位。但这颗恒星很小,是一颗红矮星,质量只约太阳的8.9%,表面温度只有约2600度,不到太阳的一半,光度只有太阳的约十一万分之一,视星等为15.4等,距离人类肉眼能看到的6等星亮度差了5757倍,因此很晚才被发现。由于恒星很小,亮度热度较低,其行星为了获得可保存液态水的温度就必须距离恒星较近,因此在所谓宜居带的蒂加登星b距离蒂加登星就只有约0.025天文单位,约375万公里,也就是约为地球与太阳距离的0.025倍,约水星与太阳距离的十六分之一。根据蒂加登星的亮度和温度,在这样一个距离相当在我们太阳系的地球和金星轨道之间,正好是在宜居带,让蒂加登星b的表面气温能够保持在0摄氏度以上,理论上应该比地球更热一些,具备存在液态水的条件。但这种距离不可避免可能会发生两个事件:其一,蒂加登星强大的引力潮汐力很可能早就将蒂加登星b潮汐锁定了,就像月球被地球潮汐锁定一样,永远一面朝着主星;其二,强大的恒星风让蒂加登星b的大气很难保留。这样,蒂加登星b会成为一个冰火两重天的世界,朝着主恒星的一面处于永远的白天炽热状态,水被蒸发殆尽,而背着主恒星的一面则永远处于黑暗的冰封酷寒中,连大气都被冻结。而且,许多红矮星都是耀星,所谓耀星就是恒星上每天会出现几次超级耀斑爆发,紫外辐射会瞬间增强几百乃至上万倍,在耀斑爆发的几分钟内,恒星都会由红色变成蓝色,这种强烈的紫外辐射会杀死行星上一切生命,同时吹跑行星大气。大气和地磁是地球生命保护的双重铠甲,蒂加登星b没有了大气和地磁保护,将受到来自蒂加登星的强烈辐射,生命很难存活。而且,这样近的距离让绕蒂加登星公转一圈只需约117个小时,每秒线速度约56公里。也就是如果那里真的有蒂加登星人,他们约4.9个地球日就过了一年。当然,由于已经被潮汐锁定,就没有了一年四季,倒也感觉不到一年的寒暑变化。那么,蒂加登星b在这样的环境下会有生命存在吗?现在还是个未知数,也只能是个未知数。因为人类现在的观测水平还很弱,无法看清那里的一切,甚至根本看不到蒂加登星b的存在,只是通过大型天文望远镜分析恒星的光变和引力摄动,来估计那里的情况。如果要证实那里到底有没有蒂加登星人,最好的办法就是到那附近去看一看。可惜,现在人类的航天速度还处于蜗牛时代,虽然无人探测器通过行星引力弹弓效应已经达到了秒速200公里,但载人航天的速度还只能勉强达到第二宇宙速度,也就是每秒11.2公里。如果要飞出太阳系,至少要达到第三宇宙速度,即每秒16.7公里。如果载人航天在短期内达到第三宇宙速度,按每秒17公里的速度飞到蒂加登星去,一切都顺利的话,旅途也要22万年;即便无人探测器200公里秒速,飞往蒂加登星也需要18700多年。因此,要去蒂加登星看一看的愿望,在今天还只能是个不切实际的梦。这样,那里有没有蒂加登星人,就无法定论了。不过科学家通过分析,认为那里的生命存在条件并没有上述说的那么悲观,主要原因如下:1、蒂加登星的年龄至少已经有80亿岁了,这样比太阳就大了约35亿岁,作为红矮星年轻气盛的耀星时期已经过去了,恒星运行已经平稳多了,因此对蒂加登星b就友好多了,不至于有那么恶劣的辐射环境。2、即便蒂加登星的大气被吹跑了,又没有地磁保护,但只要有海洋存在,同样可以孕育和生存生命,因为海洋可以隔离和吸收辐射,生命可以生存在深水里。3、即便被潮汐锁定,一面固定对着恒星,另一面永远得不到光照,但如果有空气流动的话,依然能够传递热量,让背面也能感受到温暖;而且,在晨昏带,就是白天与黑夜的交界处,还有一圈恒温带,完全适宜生命存在。4、相对太阳这样的黄矮星,红矮星寿命超长,因此具有让生命稳定生存很长的时期,这个时间长达几百上千亿年,蒂加登星寿命可达万亿年。而太阳寿命只有100亿岁,而且让地球生命宜居的时间只有10~15亿年。5、现在的蒂加登星b比地球年龄大了35亿岁,如果蒂加登星人像人类一样的时间出现,现在文明已经有35亿年了,那是何等先进的文明啊。所以,科学家们还是看好那里的生命,更期盼着那里出现文明。如果那里真的存在高级别文明,我们去不了,说不定哪天蒂加登星人就来到我们面前呢。
标签:
>推荐阅读 >特别推荐 >火热推荐