首页 > 探索

解密黑暗:不断加速的宇宙和对暗能量的探索

时间:2024-03-15来源:网络作者:小白

暗能量在推动宇宙加速膨胀方面所起的作用是天体物理学中的一个关键挑战,它推动着正在进行的研究和致力于揭示这种神秘力量本质的太空任务。

大约 138 亿年前,宇宙开始迅速膨胀,我们称之为宇宙大爆炸。

在持续了几分之一秒的初始膨胀之后,引力开始让宇宙减速。

解密黑暗:不断加速的宇宙和对暗能量的探索

这张信息图概述了宇宙的历史。

资料美国国家航空航天局

但宇宙不会一直这样下去。

宇宙开始膨胀 90 亿年后,在一种未知力量的推动下,宇宙开始加速膨胀,科学家将其命名为暗能量。

但暗能量究竟是什么呢?简短的回答是我们不知道。

但我们确实知道它的存在,它使宇宙加速膨胀,大约 68.3% 到 70% 的宇宙都是暗能量。

一切都源于仙王座

暗能量直到 20 世纪 90 年代末才被发现。

但它在科学研究中的起源却要追溯到 1912 年,当时美国天文学家亨丽埃塔-斯旺-利维特利用仙王座变星做出了一项重要发现,仙王座变星是一类恒星,其亮度波动的规律性取决于恒星的亮度。

所有具有一定周期的仙王座恒星(仙王座恒星的周期是指从明亮到暗淡再到明亮的时间)都具有相同的绝对星等或光度--它们发出的光量。

利维特测量了这些恒星,证明它们的亮度周期和光度之间存在一定的关系。

利维特的发现使天文学家有可能利用恒星的周期和光度来测量我们与遥远星系(以及我们自己的银河系)中的仙王座恒星之间的距离。

大约在同一历史时期,天文学家维斯托-斯莱弗(Vesto Slipher)使用他的望远镜的摄谱仪观测到了螺旋星系。

摄谱仪是一种将光线分成不同颜色的装置,就像三棱镜将光线分成彩虹一样。

他利用当时相对较新的发明--摄谱仪来观察来自星系的不同波长、不同光谱线的光线。

通过他的观测,西尔弗成为第一位观测到遥远星系中星系远离我们的速度的天文学家,这种观测被称为红移。

这些观测结果被证明对未来许多科学突破,包括暗能量的发现至关重要。

当天体远离我们时,来自这些天体的光线就会拉长,这就是"红移"。

光的行为就像波一样,而红光的波长最长。

因此,来自远离我们的天体的光线波长更长,延伸到电磁波的"红端"。

探索不断扩展的宇宙

星系红移的发现、仙王座变星的周期-光度关系,以及测量恒星或星系距离的新发现,最终让天文学家观测到星系随着时间的推移离我们越来越远,这表明宇宙正在膨胀。

在随后的几年里,世界上不同的科学家开始把宇宙膨胀的碎片拼凑在一起。

1922 年,俄罗斯科学家兼数学家亚历山大-弗里德曼发表了一篇论文,详细阐述了宇宙历史的多种可能性。

这篇论文以阿尔伯特-爱因斯坦于 1917 年发表的广义相对论为基础,其中包括宇宙正在膨胀的可能性。

1927 年,比利时天文学家乔治-勒梅特(Georges Lemaître)发表了一篇论文,其中也提到了爱因斯坦的广义相对论。

虽然爱因斯坦在他的理论中指出宇宙是静止的,但勒梅特尔却指出了爱因斯坦理论中的方程实际上是如何支持宇宙并非静止而是在膨胀这一观点的。

1929 年,天文学家埃德温-哈勃(Edwin Hubble)通过他的助手、天文学家米尔顿-胡马森(Milton Humason)的观测,证实宇宙正在膨胀。

胡马森测量了螺旋星系的红移。

哈勃和胡马森随后研究了这些星系中的倒彩恒星,利用这些恒星来确定星系(或他们称之为星云)的距离。

他们将这些星系的距离与它们的红移进行了比较,并追踪到一个天体离我们越远,红移越大,远离我们的速度也越快。

他们发现,星系等天体离地球的距离越远,其移动速度越快,每秒可达数十万英里--这一观测结果现在被称为哈勃定律或哈勃-勒梅特定律。

他们证实,宇宙真的在膨胀。

解密黑暗:不断加速的宇宙和对暗能量的探索

这张合成图展示了迄今为止星系团之间最复杂、最戏剧性的碰撞。

这个星系的正式名称是 Abell 2744,由于发现了各种各样不同的结构,因此被称为潘多拉星系团。

钱德拉(红色)数据显示气体温度高达数百万度。

蓝色是根据哈勃太空望远镜、甚大望远镜(VLT)和斯巴鲁望远镜的数据绘制的总质量浓度图(主要是暗物质)。

哈勃太空望远镜和甚大望远镜的光学数据还显示了星系团的组成星系。

天文学家认为至少有四个来自不同方向的星系团参与了这次碰撞。

资料X射线:

NASA/CXC/ITA/INAF/J.Merten et al, Lensing:NASA/STSCI;NAOJ/Subaru;ESO/VLT,光学:NASA/STSCI/R.Dupke

超新星显示膨胀正在加速

科学家们以前认为,宇宙的膨胀很可能会随着时间的推移而被引力减缓,爱因斯坦的广义相对论支持这一预期。

但在 1998 年,当两个不同的天文学家小组在观测遥远的超新星时注意到(在某一红移下)恒星爆炸比预期的要暗淡时,一切都改变了。

这三个小组分别由天文学家亚当-里斯(Adam Riess)、索尔-珀尔马特(Saul Perlmutter)和布莱恩-施密特(Brian Schmidt)领导。

这三人因此获得了2011年诺贝尔物理学奖。

虽然暗淡的超新星似乎并不是什么重大发现,但这些天文学家正在观测的是1a 型超新星,众所周知,这些超新星具有一定的光度。

因此他们知道,一定还有其他因素让这些天体看起来更暗。

科学家们可以通过天体的亮度来确定距离(和速度),较暗的天体通常距离较远(尽管周围的尘埃和其他因素也会导致天体变暗)。

科学家们由此得出结论,这些超新星的红移距离比他们预计的要远得多。

利用天体的亮度,研究人员确定了这些超新星的距离。

利用光谱,他们还能计算出这些天体的红移,从而推算出它们远离我们的速度。

他们发现这些超新星并不像预期的那样接近,这意味着它们远离我们的速度比预想的要快。

这些观测结果让科学家们最终得出结论:宇宙本身一定在以更快的速度膨胀。

虽然人们已经探索了这些观测结果的其他可能解释,但近年来研究更遥远的超新星或其他宇宙现象的天文学家继续收集证据,并为宇宙随着时间的推移膨胀得更快这一观点提供支持,这一现象现在被称为宇宙加速。

但是,科学家们在建立宇宙加速论的同时,也提出了一个问题:为什么?是什么促使宇宙随着时间的推移加速延伸?

进入暗能量

暗能量究竟是什么?

现在,暗能量只是天文学家对导致宇宙加速膨胀的神秘的"东西"的称呼。

有人将暗能量描述为一种负压,它将空间向外推。

然而,我们并不知道暗能量是否具有任何类型的力的作用。

关于暗能量可能是什么,有很多说法。

以下是对暗能量的四种主要解释,它有可能完全是另一种东西。

真空能量

一些科学家认为,暗能量是太空中一种基本的、无处不在的背景能量,被称为真空能,它可能等同于宇宙常数,这是爱因斯坦广义相对论方程中的一个数学术语。

最初,宇宙常数的存在是为了抵消万有引力,从而形成一个静态的宇宙。

但当哈勃证实宇宙实际上在膨胀时,爱因斯坦删除了这个常数,物理学家乔治-加莫称这是"我最大的失误"。

但是,当后来发现宇宙的膨胀实际上是在加速时,一些科学家提出,以前被否定的宇宙学常数实际上可能存在一个非零值。

他们认为,这种额外的力量是加速宇宙膨胀所必需的。

这种理论认为,这种神秘的成分可以归因于一种叫做"真空能"的东西,这是一种渗透到整个空间的理论背景能量。

空间从来不是完全空的。

根据量子场论,宇宙中存在虚拟粒子,即粒子对和反粒子对。

人们认为,这些虚拟粒子在宇宙中出现的同时就会相互抵消,而这种忽隐忽现的现象可能是由"真空能"造成的,"真空能"充满宇宙并推动空间向外扩展。

虽然这一理论一直是人们讨论的热门话题,但研究这一方案的科学家们已经计算出了理论上太空中应该有多少真空能。

结果表明,要么存在大量的真空能,以至于在宇宙诞生之初,宇宙会以极快的速度和巨大的力量向外膨胀,以至于不可能形成恒星或星系;要么......绝对不存在真空能。

这意味着,宇宙中的真空能量一定比这些预测中的要小得多。

然而,这一差异至今仍未解决,甚至被称为"宇宙常数问题"。

五元素:

一些科学家认为,暗能量可能是一种充满空间的能量流体或能量场,其行为方式与正常物质相反,其数量和分布在时间和空间上都会发生变化。

这种假设的暗能量被昵称为"五元素"(Quintessence),源自古希腊哲学家讨论的理论上的第五元素。

一些科学家甚至认为,五元素可能是暗能量和暗物质的某种组合,尽管这两者目前被认为是完全独立的。

虽然这两种物质对科学家来说都是一大谜团,但暗物质被认为占宇宙中所有物质的 85%。

太空皱纹

一些科学家认为,暗能量可能是宇宙结构本身的一种缺陷;这种缺陷就像宇宙弦一样,是一种假想的一维"皱纹",被认为是在早期宇宙中形成的。

广义相对论的缺陷

一些科学家认为,暗能量并不是我们能够发现的物理现象。

相反,他们认为广义相对论和爱因斯坦的万有引力理论可能存在问题,以及它在可观测宇宙范围内的工作原理。

在这个解释中,科学家们认为有可能修改我们对万有引力的理解,从而在不需要暗能量的情况下解释对宇宙的观测。

爱因斯坦其实在 1919 年就提出了这样一个想法,叫做单模引力,这是广义相对论的一个修正版,今天的科学家认为它不需要暗能量就能解释宇宙。

未来

暗能量是宇宙的一大谜团。

几十年来,科学家们一直在推测我们不断膨胀的宇宙。

现在,我们第一次有了足够强大的工具来检验这些理论 并真正研究这个大问题:"暗能量是什么?"

美国国家航空航天局(NASA)在欧空局(ESA)的欧几里得(Euclid)任务(2023 年发射)中发挥着至关重要的作用,该任务将绘制宇宙三维地图,以观察物质是如何随着时间的推移被暗能量拉开的。

该地图将包括对距离地球 100 亿光年的数十亿星系的观测。

美国国家航空航天局(NASA)的南希-格蕾丝-罗曼太空望远镜将于2027年5月发射升空,旨在研究暗能量等诸多科学课题,还将绘制三维暗物质地图。

罗曼望远镜的分辨率将与美国国家航空航天局的哈勃太空望远镜一样清晰,但视场要大 100 倍,从而能够捕捉到更广阔的宇宙图像。

这将使科学家们能够绘制出宇宙中物质的结构和分布情况,并探索暗能量的表现和随时间的变化。

罗曼还将进行一次额外的巡天观测,以探测 Ia 型超新星。

除了美国国家航空航天局的任务和努力之外,由包括美国国家科学基金会在内的大型合作机构支持的维拉-C-鲁宾天文台(目前正在智利建造)也准备支持我们对暗能量的不断深入了解。

该地面观测站预计将于 2025 年投入使用。

在欧几里得、罗曼和鲁宾的共同努力下,宇宙学将迎来一个新的"黄金时代",科学家们将收集到比以往任何时候都更加详细的关于暗能量之谜的信息。

此外,美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(2021 年发射)是世界上最强大、最大的太空望远镜,旨在为多个研究领域做出贡献,并将为暗能量研究做出贡献。

美国国家航空航天局(NASA)的SPHEREx(宇宙历史、再电离纪元和冰探索者分光光度计)任务计划最迟于2025年4月发射,旨在研究宇宙的起源。

SPHEREx将用近红外线探测整个天空,其中包括4.5亿多个星系,科学家们希望SPHEREx收集到的数据能够帮助我们进一步了解暗能量。

美国国家航空航天局(NASA)还支持一个名为"暗能量探索者"的公民科学项目,该项目使世界上任何人,即使没有受过科学训练,也能帮助寻找暗能量的答案。

最后,需要澄清的是,暗能量并不等同于暗物质。

它们的主要相似之处在于:我们还不知道它们是什么!

编译自:ScitechDaily

宇宙中5颗奇特的系外行星,其表面的恶劣程度难以想象!

在我们的太阳系中一共有八颗行星围绕着太阳旋转,其中内侧四颗为岩石行星,外侧四颗为气态行星,不过行星并非是太阳独有,在宇宙中几乎每一颗恒星都拥有自己的行星,而这些行星被天文学家们称为系外行星。到目前为止,天文学家通过望远镜已经在宇宙中发现了超过5000多颗系外行星,而且在这数千颗系外行星中,还存在着远超出我们想象的奇特世界, 如有些行星的表面会下玻璃雨。有的会上演冰火两重天, 有的甚至还会逃离母星的控制,成为流浪行星,而今天便带你了解宇宙中奇特的5颗系外行星。1.HR 5183b行星HR 5183b行星是一颗气态巨行星,它距离我们大约为100光年,质量是木星的三倍,当时天文学家在发现它后,曾表示从未见过如此奇特的系外行星,因为它拥有奇怪的蛋形轨道,并且具有极高的偏心率,假如我们将他想象成太阳系的木星,那么其最远轨道能够达到海王星之外,可以想象到他的奇特之处。2.WASP-76bWASP-76b行星位于双鱼座方向,距离我们地球大约为630光年,他是一个绕着F型主序星运行的气态巨行星,其质量大约是木星的0.92倍,半径为木星的1.83倍,而它之所以独特是因为在它的表面会下铁雨,由于距离母恒星非常近,已经被潮汐锁定,因此它的一面总是朝向恒星,其白天温度高达2500C,以至于该行星上的铁元素都熔化成了气体。这些铁蒸气被强风吹到较冷的区域,并凝结成液滴形成铁雨。3.HD189733bHD189733b是一颗距离地球约63光年的系气态巨行星,质量比木星还要大13%,在2008年,天文学家通过偏振测量法测定,发现HD189733b的蓝色波段反照率高于红色,这意味着他看起来是一个美丽的蓝色星球。不过HD189733b虽然呈现出蓝色但并不是海洋,因为HD189733b表面温度极高,天文学家经过进一步分析发现,在它的大气层中富含硅酸盐,而这些硅酸盐在高温下熔化,然后形成了玻璃雨。这些玻璃雨在风速高达9000公里/小时的超音速风中呈弧形落下。4.开普勒10b开普勒-10b是开普勒望远镜发现被确认的第一颗岩质系外行星,距离地球大约为564光年,质量是地球的3.2倍左右,假如你能够置身于该行星表面会发现他这里如同地狱一般,由于距离主恒星非常之近,只有太阳至水星距离的20分之一,因此表面温度高达1300C,而在如此高温下,开普勒-10b上的铁和硅酸盐都成了熔岩状态,从而形成巨大的熔岩海洋。同时在强风的携带中,还会下熔岩金属雨5.流浪行星我们知道几乎每个行星都是围绕其母恒星运行,但在宇宙中也有特例。有些行星可能由于某种原因会逃离母恒星的引力控制,独自在寒冷的黑暗空间中徘徊。而这些行星被称为流浪行星,比如CFBDSIR2149便是一颗被恒星抛出的流浪行星。它的体积是木星的7倍,表面温度约为400摄氏度,是一颗只有5000万至1.2亿年历史的年轻行星,不过他是何种原因被抛出原来的行星系统,我们还不得而知!以上便是5个奇特的系外行星,看完不禁令人惊叹宇宙的奇妙和多样性。那么你觉得以上哪个最奇特呢,欢迎在下方评论留言!

科学发现:12.5光年外有一颗最近似地球的行星,或有外星人存在?

一百年来,科学家们采用越来越先进的仪器设备搜寻外星人,这些设备包括但不限于陆地和太空的各种类型天文望远镜、无人探测器等等,从近及远,希望在茫茫宇宙中找到知音。但一直都在失望中,太阳系没发现,远离太阳系亿万光年的深空也没发现。这至少说明了两个问题,一是就是在宇宙中生命和文明太稀有,知音难觅;二是人类的科技和探测水平还处于很低层次,无法发现即便近在咫尺的外星生命和文明。随着各种地面天文望远镜、太空望远镜的不断提升,科学家们的目光从太阳系内逐步转向太阳系外,寻找可能存在生命的行星。1992年美国阿雷西博天文台发现了第一颗太阳系外行星,迄今已经有5000多颗太阳系外行星被发现。科学家们按照地球生命孕育和存在条件来寻找地外星球的生命之源,即寻找所谓的宜居星球。地球是一颗具有岩石外壳的行星,这样才能够适宜生命在表面活动;其次地球存在液态水,海洋才是地球生命的摇篮。而适宜温度,是液态水存在的前提条件,目前地球平均气温约为15℃。科学家们认定这是目前认知生命存在的两个硬条件,系外行星如果具备这两个条件,就属于宜居星球。行星本身不发光发热,主要依靠恒星的辐射能量才能保持温度,这样宜居星球就至少要与主恒星保持一定距离,远了不行,近了也不不行;宜居星球还不能像太阳系木星、土星、天王星、海王星那样的气态行星,而是像地球、火星这样的岩石行星。符合这两个条件的行星极少,在已经找到的5000多颗太阳系外行星中,类地行星大约只有几百颗,宜居带行星只有几十颗。当然,除了以上最重要的两项条件,要让生命孕育和存活还有许多严苛的要求,这样科学家们弄了个地球相似度指数,英文为Earth Similarity Index,简称为ESI,就是根据行星半径、密度、质量、逃逸速度、表面温度、处在宜居带的位置等,通过公式量化打分,取值0~1之间,0代表完全不同,1代表完全相同。一般认为0.5分以下的行星是不适宜生命存在的,相似度越高,孕育和存在生命的可能性就越高。在我们太阳系,除了地球,还有三颗类地行星,它们的ESI值分别为:水星0.6,金星0.44,火星0.7。金星是距离地球最近的行星,且质量和地球差不多,又距离太阳系宜居带最近,为啥ESI反而只有0.44呢?这就是因为那里的大气和表面状态十分恶劣,被称为太阳系的地狱行星。而火星ESI值为0.7,是太阳系与地球相似度最大的行星,这也是科学家们正在努力奔赴火星,企图开发火星的原因。而太阳系外一些经过科学家们精挑细选出来的行星,却有不少高于火星ESI值的星球,如格利泽-832 c为0.81,开普勒-442 b为0.83,开普勒-62 e为0.83,格利泽-667 Cc为0.84,开普勒-438 b为0.88等。距离我们最近的恒星比邻星也有两颗行星,其中比邻星b的ESI值也高达0.86。而我们今天重点要说的这颗蒂加登星b星,ESI值竟高达0.95!这是迄今为止,科学家们在太阳系外发现与地球最接近的行星,说它是地球的表兄弟甚至亲兄弟都不为过,那么那里会存在蒂加登星人吗?现在开始说重点:蒂加登星b是一颗怎样的星球?2003年,科学家在白羊座发现一颗暗弱的恒星,被称为SO J025300.5+165258,距离我们12.5光年。这项发现是NASA一个研究小组在搜寻之前的小行星数据资料中意外找到的,由此就以这个研究小组组长、NASA天体物理学家博纳尔·蒂加登的名字命名,被称为蒂加登星。为了方便读者理解,这里简要说一下系外行星的命名规则。一般来说就是在发现的恒星后面加上小写字母a以后的英文字母,a一般用于恒星,不用于行星。因此某恒星系统第一颗被发现的行星就被称为某恒星b,其次就类推为c、d、e、f、g…等等。蒂加登星现在发现了两颗行星,被分别命名为蒂加登星b和蒂加登星c,我们要说的ESI值达到9.5的行星就是蒂加登星b。为什么其与地球相似度这么高呢?首先,其公转轨道处于蒂加登星的宜居带,因此其表面温度适宜,这样,这颗星表面就很可能存在着液态水;其次,这颗星是一颗类地行星,其大小约地球的1.05倍,也就是个头质量与地球差不多,生命承受的重力也与地球相当。这是宜居星球最重要的两项指标,蒂加登星b都符合,通过计算其ESI值达到惊人的9.5。但因此就认为那上面一定会有我们的知音,就有些过于乐观了。实际上,蒂加登星b还有许多与我们地球不一样的条件,有些甚至令人细思极恐。蒂加登星b的主恒星蒂加登星是距离太阳最近的恒星之一,排在第24位。但这颗恒星很小,是一颗红矮星,质量只约太阳的8.9%,表面温度只有约2600度,不到太阳的一半,光度只有太阳的约十一万分之一,视星等为15.4等,距离人类肉眼能看到的6等星亮度差了5757倍,因此很晚才被发现。由于恒星很小,亮度热度较低,其行星为了获得可保存液态水的温度就必须距离恒星较近,因此在所谓宜居带的蒂加登星b距离蒂加登星就只有约0.025天文单位,约375万公里,也就是约为地球与太阳距离的0.025倍,约水星与太阳距离的十六分之一。根据蒂加登星的亮度和温度,在这样一个距离相当在我们太阳系的地球和金星轨道之间,正好是在宜居带,让蒂加登星b的表面气温能够保持在0摄氏度以上,理论上应该比地球更热一些,具备存在液态水的条件。但这种距离不可避免可能会发生两个事件:其一,蒂加登星强大的引力潮汐力很可能早就将蒂加登星b潮汐锁定了,就像月球被地球潮汐锁定一样,永远一面朝着主星;其二,强大的恒星风让蒂加登星b的大气很难保留。这样,蒂加登星b会成为一个冰火两重天的世界,朝着主恒星的一面处于永远的白天炽热状态,水被蒸发殆尽,而背着主恒星的一面则永远处于黑暗的冰封酷寒中,连大气都被冻结。而且,许多红矮星都是耀星,所谓耀星就是恒星上每天会出现几次超级耀斑爆发,紫外辐射会瞬间增强几百乃至上万倍,在耀斑爆发的几分钟内,恒星都会由红色变成蓝色,这种强烈的紫外辐射会杀死行星上一切生命,同时吹跑行星大气。大气和地磁是地球生命保护的双重铠甲,蒂加登星b没有了大气和地磁保护,将受到来自蒂加登星的强烈辐射,生命很难存活。而且,这样近的距离让绕蒂加登星公转一圈只需约117个小时,每秒线速度约56公里。也就是如果那里真的有蒂加登星人,他们约4.9个地球日就过了一年。当然,由于已经被潮汐锁定,就没有了一年四季,倒也感觉不到一年的寒暑变化。那么,蒂加登星b在这样的环境下会有生命存在吗?现在还是个未知数,也只能是个未知数。因为人类现在的观测水平还很弱,无法看清那里的一切,甚至根本看不到蒂加登星b的存在,只是通过大型天文望远镜分析恒星的光变和引力摄动,来估计那里的情况。如果要证实那里到底有没有蒂加登星人,最好的办法就是到那附近去看一看。可惜,现在人类的航天速度还处于蜗牛时代,虽然无人探测器通过行星引力弹弓效应已经达到了秒速200公里,但载人航天的速度还只能勉强达到第二宇宙速度,也就是每秒11.2公里。如果要飞出太阳系,至少要达到第三宇宙速度,即每秒16.7公里。如果载人航天在短期内达到第三宇宙速度,按每秒17公里的速度飞到蒂加登星去,一切都顺利的话,旅途也要22万年;即便无人探测器200公里秒速,飞往蒂加登星也需要18700多年。因此,要去蒂加登星看一看的愿望,在今天还只能是个不切实际的梦。这样,那里有没有蒂加登星人,就无法定论了。不过科学家通过分析,认为那里的生命存在条件并没有上述说的那么悲观,主要原因如下:1、蒂加登星的年龄至少已经有80亿岁了,这样比太阳就大了约35亿岁,作为红矮星年轻气盛的耀星时期已经过去了,恒星运行已经平稳多了,因此对蒂加登星b就友好多了,不至于有那么恶劣的辐射环境。2、即便蒂加登星的大气被吹跑了,又没有地磁保护,但只要有海洋存在,同样可以孕育和生存生命,因为海洋可以隔离和吸收辐射,生命可以生存在深水里。3、即便被潮汐锁定,一面固定对着恒星,另一面永远得不到光照,但如果有空气流动的话,依然能够传递热量,让背面也能感受到温暖;而且,在晨昏带,就是白天与黑夜的交界处,还有一圈恒温带,完全适宜生命存在。4、相对太阳这样的黄矮星,红矮星寿命超长,因此具有让生命稳定生存很长的时期,这个时间长达几百上千亿年,蒂加登星寿命可达万亿年。而太阳寿命只有100亿岁,而且让地球生命宜居的时间只有10~15亿年。5、现在的蒂加登星b比地球年龄大了35亿岁,如果蒂加登星人像人类一样的时间出现,现在文明已经有35亿年了,那是何等先进的文明啊。所以,科学家们还是看好那里的生命,更期盼着那里出现文明。如果那里真的存在高级别文明,我们去不了,说不定哪天蒂加登星人就来到我们面前呢。
>推荐阅读 >特别推荐 >火热推荐